Characterization of columnar inertial modes in rapidly rotating spheres and spheroids
نویسندگان
چکیده
منابع مشابه
Magneto-inertial convection in rotating fluid spheres
The onset of convection in the form of magneto-inertial waves in a rotating fluid sphere permeated by a constant axial electric current is studied through a perturbation analysis. Explicit expressions for the dependence of the Rayleigh number on the azimuthal wavenumber are derived in the limit of high thermal diffusivity. Results for the cases of thermally infinitely conducting and of nearly t...
متن کاملThermal and inertial modes of convection in a rapidly rotating annulus
The nature of the primary instabilities that arise in a fluid contained in a fast rotating cylindrical annulus with slightly inclined plane top and bottom boundaries, radial gravity, and internal heating is numerically analyzed. It is shown that for moderate and high Prandtl numbers, the onset of convection is described by a competition of azimuthal thermal modes with different radial structure...
متن کاملInertial modes in a rotating triaxial ellipsoid.
In this work, we present an algorithm that enables computation of inertial modes and their corresponding frequencies in a rotating triaxial ellipsoid. The method consists of projecting the inertial mode equation onto finite-dimensional bases of polynomial vector fields. It is shown that this leads to a well-posed eigenvalue problem, and hence, that eigenmodes are of polynomial form. Furthermore...
متن کاملInertial modes of slowly rotating isentropic stars
We investigate inertial mode oscillations of slowly and uniformly rotating, isentropic, Newtonian stars. Inertial mode oscillations are induced by the Coriolis force due to the star’s rotation, and their characteristic frequencies are comparable with the rotation frequency Ω of the star. So called r-mode oscillations form a sub-class of the inertial modes. In this paper, we use the term “r-mode...
متن کاملInertial waves in rapidly rotating flows: a dynamical systems perspective
An overview of recent developments in a wide variety of enclosed rapidly rotating flows is presented. Highlighted is the interplay between inertial waves, which have been predicted from linear inviscid considerations, and the viscous boundary layer dynamics which result from instabilities as the nonlinearities in the systems are increased. Further, even in the absence of boundary layer instabil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
سال: 2017
ISSN: 1364-5021,1471-2946
DOI: 10.1098/rspa.2017.0181